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Membrane traffic requires the generation of high-curvature lipid-

bound transport carriers represented by tubules and vesicles.

The mechanisms through which membranes are deformed has

gained much recent attention. A major advance has been the

demonstration that direct interactions between cytosolic

proteins and lipid bilayers are important in the acquisition of

membrane curvature. Rather than being driven only by the

formation of membrane-associated structural scaffolds,

membrane deformation requires physical perturbation of the lipid

bilayer. A variety of proteins have been identified that directly

bind and deform membranes. An emerging theme in this process

is the importance of amphipathic peptides that partially

penetrate the lipid bilayer.
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Abbreviations
COP coatomer complex

LPAAT lysophosphatidic acid acyltransferase

MVB multivesicular body

PI(4,5)P2 phosphatidylinositol 4,5-bisphosphate

Introduction
Cellular compartmentalisation requires membrane-bound

structures. Traffic between membranous organelles occurs

via tubular and vesicular membrane carriers that bud and

fuse, effectively maintaining the compartmentalised state

while allowing for dynamic flux. Over the past few years,

we have garnered greater understanding of the molecular

processes by which the trafficking organelles — tubules

and vesicles — form and behave. Generation of these

structures can be driven by a cooperation of mechanisms

both extrinsic and intrinsic to the membrane. Mechanical

forces applied to the membrane by the cytoskeleton can

induce membrane tubule formation. Proteinaceous coats

selectively associated with the surface of membrane buds

are key mediators of vesicle formation in the endocytic

and secretory pathways. Accessory factors to the main

constituents of coat proteins have also recently been

found to be an integral part of both vesicle formation

and cargo selection within the bud. Proteins that can

deform the membrane into tubules have been identified

and characterised. In addition, lipid components of the

membrane, either directly or via interaction with proteins,

have been suggested to facilitate the structural changes

necessary to deform membranes.

In this review, we will primarily focus on recently

described mechanisms for membrane deformation that

have expanded our understanding of this process.

Extrinsic forces on the membrane
Cytoskeletal elements have long been known to play

some role in membrane traffic, not only by forming the

structural scaffold and network over which membrane

traffic flows, but also by directly deforming membranes

(Figure 1) [1–3]. A characteristic property of membrane

bilayers is that the application of an external focal force

results in bilayer tubule formation, rather than a broad

‘tenting’ of the membrane. Many intracellular membrane

tubules are generated in this fashion [4�,5–8]. For exam-

ple, microtubule motors can pull a developing membrane

tubule along a preformed microtubule track in vitro
[1,4�,5]. Microtubule-dependent mechanisms, possibly

in cooperation with other cytosolic factors [9], have also

been shown to play a role in vitro and in vivo for the

tubular dynamics of the ER [1,2,10,11], as well as for the

Golgi and endosome tubulation events following treat-

ment with the fungal metabolite brefeldin A (BFA) [12].

Other cytoskeletal elements, such as actin filaments and

membrane-tethered myosin motors, may similarly parti-

cipate in membrane deformation [13–15,16�,17]. One

obvious example of actin-dependent membrane deforma-

tion is the formation of cell-surface tubular microvilli,

formed by the extension of actin filaments against the

plasma membrane. Thus, the cytoskeleton might affect

membrane traffic by both structural and dynamic forces

acting on the membrane.

Intrinsic forces on the membrane
Protein-mediated effects

Over the past few years, emerging data have implicated

cytosolic proteins in bilayer deformation upon recruit-

ment to the membrane. Oligomerisation of these proteins

into a coat scaffold on the membrane has traditionally

been thought to promote budding by imposing curvature

on the membrane [18–20] (Figure 2a). This view, first

developed for the clathrin coat, was then extended to

other protein coats observed on vesicles, such as COPI
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[20] and COPII [21], and has since been supported by

data revealing an intrinsic curvature in the structure of

coat-protein scaffolds [22,23�]. Importantly, the observa-

tion that coat assembly, bilayer invagination, and, in some

cases, even fission could occur on protein-free liposomes

demonstrated that no integral membrane proteins were

required for this process [24–29].

As with the cytosolic proteins which form the coat on a

developing bud, cytosolic proteins have also been found to

drive bilayer tubulation following recruitment to the mem-

brane (Figure 2b). The first evidence that cytosolic pro-

teins play a physiological role in the generation of

membrane tubules came from studies of dynamin, a

GTPase critically implicated in the fission reaction of

clathrin-coated vesicles and other membrane trafficking

events [30–32]. Purified dynamin has the property to self-

assemble into rings and spirals, both in solution and at the

narrow tubular stalks of endocytic vesicles [33,34]. Both in
vitro and in vivo, dynamin can deform lipid bilayers into

narrow tubules coated by dynamin spirals [25,35,36]. A

predominant theory emerged: coat proteins were involved

in budding from the donor membrane, and dynamin rings

were involved in forming the tubular neck of the clathrin-

coated bud [34]. Upon GTP hydrolysis, constriction of the

dynamin ring would mediate fission [31,36,37�] (but see

[38,39] for alternative interpretations).

The identification and characterisation of proteins asso-

ciated with clathrin and dynamin, in conjunction with

recent theoretical considerations of membrane biophy-

sics, have since expanded and revised this view. With

respect to clathrin, for example, to drive membrane

curvature effectively, the rigidity of the coat protein

polymer has to supercede the resistance of mechanically

bending the membrane, described as the membrane-

bending elastic modulus [40�]. This notion has recently

been challenged for clathrin, because of estimations that

the rigidity of clathrin triskelia is similar to the mem-

brane-bending elastic modulus [40�]. If true, clathrin

could at best serve to maintain an already curved mem-

brane, thereby preventing its collapse back into an effec-

tively planar form [40�]. Thus, mechanisms in addition to

coat-protein lattice formation that may help in deforming

the bilayer are likely to come into play.

With respect to dynamin and tubulation, the identifica-

tion of other endocytic proteins that bind and tubulate

lipid bilayers has expanded the repertoire of proteins

involved in this process. Amphiphysin and endophilin,

two major interactors of dynamin, were found to robustly

deform liposomes into narrow membrane tubules

[41,42�]. Epsin, an interactor of clathrin and of the clathrin

Figure 1

Cytoskeleton
Motor protein
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Cytoskeletal mechanisms for membrane deformation. Cytoskeletal

elements may have multiple roles in membrane deformation. Above left:

cytoskeleton-dependent formation and maintenance of tubular organelle

structures; middle: formation of membrane tubules pulled by a

cytoskeletal motor protein; below right: external cytoskeletal forces

abutting the membrane and causing deformation.

Figure 2

(a) (b)

(c)
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Two modes of protein-mediated membrane deformation. (a,b) Proteins

that polymerise with an intrinsic curvature (forming either spheres or
spirals) could potentially drive bilayer curvature and influence membrane

shape. (c) Membrane deformation according to the bilayer-couple

hypothesis. By penetration of an amphipathic helix into the interfacial

section of the bilayer, proteins could drive membrane deformation owing

to bilayer surface-area discrepancy.
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adaptor AP-2 [43–45], was also shown to induce mem-

brane tubulation [46�]. There is currently no evidence

that these proteins self-assemble into rings, like dynamin,

in the absence of a lipid bilayer. The property of these

proteins to deform membranes is likely to reflect a unique

interaction with the membrane bilayer (see below),

because not all proteins that bind lipid bilayers are able

to induce deformation.

There is evidence for a role for these endocytic proteins in

the early stages of clathrin-mediated budding, before the

generation of a tubular neck, suggesting that the physio-

logical role for these proteins might not be restricted to

the formation of tubular membranes. For example, dyna-

min can be found on the dome of clathrin-coated buds,

and antibody disruption of dynamin function at the

lamprey synapse leads to markedly impaired clathrin-

coated bud formation [47]. Furthermore, impairment of

endophilin function at the lamprey synapse by antibody

injection or by genetic disruption (in Drosophila) results in

synaptic vesicle depletion and the accumulation of shal-

low clathrin-coated pits [48,49,50�,51�].

Amphiphysin also binds clathrin and AP-2 in addition to

dynamin [52,53], and clathrin-coated buds generated in

the presence of amphiphysin have a more homogenous,

smaller size than buds generated in the presence of

clathrin-coat fractions alone (K Farsad et al., unpublished

data). Finally, epsin is able to recruit clathrin onto a lipid

monolayer and induces ‘puckered’ clathrin-coated struc-

tures [46�]. Thus, via their ability to deform planar

membranes, these proteins might assist clathrin in early

stages of bud formation.

Although the above considerations apply to clathrin coats,

it is still unknown whether similar mechanisms (i.e.

cooperation of scaffold proteins and membrane-deform-

ing proteins) might also function in coats comprising the

COP proteins. In addition, caveolin polymerisation and

membrane interactions are thought to play a role in

caveolar budding [54–57]. As a final note, one possibility

is that various properties of integral membrane proteins

might also contribute to membrane deformation. For

example, this has been proposed for peripherin, a trans-

membrane protein concentrated at areas of high curvature

in the outer segment discs of retinal photoreceptors, and

which induces flattened microsomal vesicles when

expressed in vitro [58–60].

Lipid-mediated effects

The role of lipid-specific dynamics in enabling or gen-

erating membrane curvature has also been an area of

provocative research [61–63]. For example, selective

transfer of lipids between bilayer leaflets has been pro-

posed as a means by which surface area asymmetries

could influence budding and endocytosis (see below

and Figure 3a) [62,64]. In addition, certain lipid species

are postulated to favour bilayer curvature owing to their

physico-chemical properties, their relative geometries,

or both [65,66]. Cholesterol, for example, is required

for the generation of high-curvature clathrin-coated buds

in vivo — cholesterol-depleting compounds prevent

maturation of a bud past a shallow level of curvature

[67,68]. One possible function of cholesterol is selectively

to intercalate into the budding-side leaflet of the bilayer

to enable bud formation without producing unfavourable

hydrophobic–hydrophilic interactions as the bilayer is

distorted (Figure 3b). Two proteins enriched in endocytic

vesicle carriers, synaptophysin and caveolin, bind choles-

terol [69,70]. These proteins could function to concen-

trate this lipid selectively in the budding portion of the

bilayer, thus allowing more favourable phase interactions

as the nascent bud forms [69,70]. In this way, the influ-

ence of cholesterol on membrane structure would en-

compass two non-exclusive possibilities. First, selective

enrichment of cholesterol into one leaflet of the mem-

brane might alter the relative bilayer surface areas to

favour budding. Second, through differential partitioning,

cholesterol might minimise the energy needed for bud-

ding by both decreasing local membrane stiffness and

by preserving hydrophobic and van der Waals forces

between the leaflets as the bilayer deforms [71,72,73�].

In addition, enzymatic alteration of lipids has been sug-

gested to facilitate membrane deformation by generating

particular lipid geometries (Figure 3c). Formation of type

I lipids (i.e. those that tend to form micelles in aqueous

solutions based on the geometry of their head groups and

hydrocarbon tails), such as lysophosphatidylcholine,

could favour positive curvature by adopting a wedge-like

geometry, and formation of type II lipids (i.e. those which

tend to form inverted hexagonal structures in aqueous

solutions based on the geometry of their head groups and

hydrocarbon tails), such as phosphatidylethanolamine,

might favour negative curvature by effectively creating

the reverse geometry [65,66]. For example, sphingomye-

linase, an enzyme that cleaves phosphorylcholine from

sphingomyelin to generate the type II lipid ceramide

promotes the formation of bilayer invaginations indepen-

dently from a protein-mediated effect [74]. Furthermore,

phospholipase A2 activity was shown to be required for

the 60–80 nm Golgi tubules formed upon treatment with

BFA, as well as for the formation of tubular endosomal

recycling organelles [75,76�]. Although the effect of phos-

pholipase A2 on membrane deformation is not well

understood mechanistically, one suggestion is that for-

mation of type I lysolipids in the membrane might have a

role. Putative roles for phospholipase C (PLC) and phos-

pholipase D in influencing membrane structure through

lipid modification have also been described [77–79]. Of

note, lipid metabolism could alter bilayer structure not

only directly, by affecting lipid geometries, but also

indirectly, via the regulated recruitment of membrane-

deforming proteins [46�,80].
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Endophilin has been reported to have lysophosphatidic

acid acyltransferase (LPAAT) activity, mediating the

transfer of a fatty acyl-CoA to lysophosphatidic acid, a

type I lipid [81,82]. Similarly, BARS (brefeldin A ADP-

ribosylated substrate), a protein involved in Golgi tubula-

tion and fission, was also reported to have LPAAT activity

[83]. It remains unclear what role LPAAT activity plays in

induction of membrane curvature, especially since endo-

philin has been shown directly to deform lipid bilayers

independently from this enzymatic activity [42�]. How-

ever, although the importance of the LPAAT activity of

these proteins is currently undefined, the ability of these

proteins to bind certain lipids might prove important for

their biological function.

Amphipathic peptides and the bilayer-couple
hypothesis
The bilayer-couple hypothesis, initially popularised by

Sheetz and Singer in 1974, postulates that the two halves

of a closed lipid bilayer, by virtue of asymmetries between

the bilayer leaflets, could have differential responses to

various perturbations [84,85]. Thus, a relative increase in

surface area of one leaflet of a closed bilayer, as discussed

above, is predicted to increase the spontaneous curvature

of the bilayer. To minimise its energy state and maintain

hydrophobic and van der Waals interactions between the

leaflets, an unopposed bilayer will conform to its sponta-

neous curvature [86]. Specifically, the leaflet to which

additional surface area is added will be the side to which

the bilayer will deform in compensation. Sheetz and

Singer observed that compounds with amphipathic qua-

lities, presumably by intercalating into a particular leaflet

of the membrane bilayer, were able to deform erythrocyte

membranes according to the predictions of the bilayer-

couple theory [84,85].

The bilayer-couple theory could explain the mechanism

through which certain proteins affect morphological

changes in planar membranes. By physically penetrating

into one face of the bilayer, amphipathic peptides could

cause membrane deformation (Figure 2c). The amino

termini of the tubulogenic proteins endophilin and

Figure 3

Cholesterol
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(a)

(b)

(c)

Lipid-driven membrane deformation. (a) Transfer of lipids to one leaflet could promote deformation by creating surface-area discrepancy between the

leaflets. (b) Selective accumulation of cholesterol could decrease membrane rigidity, create bilayer surface-area discrepancy, and facilitate budding.

(c) Type I and type II lipids, based on their relative geometries, have been postulated to play a role in membrane deformation. Black arrowheads

indicate the transferred lipids in (a), cholesterol molecules in (b), and the various type I or type II lipid species in (c).
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amphiphysin contain an amino acid stretch predicted to

form an amphipathic helix necessary for lipid bilayer

tubulation [42�]. The epsin amino-terminal homology

(ENTH) domain of epsin also forms an amphipathic

helix on binding phosphatidylinositol 4,5-bisphosphate

(PI[4,5]P2), and this induced helix is necessary for bilayer

tubulation [46�]. In addition, the ARF-family GTPases,

involved in recruitment of coat proteins for vesicular

trafficking along the secretory and endocytic pathways,

have an amino-terminal amphipathic helix critical for

membrane binding [87–90,91�], which potentially could

play a role in budding. An intriguing possibility is that all

Figure 4

Tubulation and clathrin-mediated budding. Tubular bilayer deformation caused by incubation of (a) amphiphysin with liposomes, (b) epsin with
liposomes, and (c) endophilin with liposomes. (d) On lipid monolayers doped with PI(4,5)P2, epsin stimulates clathrin recruitment and the formation of

monolayer ‘puckers’, as demonstrated by clathrin pentagonal and hexagonal polymeric structures. (e) Clathrin-coated buds are seen associated with

amphiphysin tubules. (f) When incubated with purified clathrin-coat proteins, endophilin-mediated membrane tubules are often capped with

clathrin-coated buds, despite no biochemical binding between endophilin and clathrin-coat proteins. The image shown in (a) is courtesy of Kohji

Takei; (b) and (d) are reproduced with permission from Nature (http://www.nature.com/) [46�]; (e) is reproduced from the Nature Cell Biology [41] by

copyright permission of the Rockefeller Press; and (c ) and (f) are reproduced, with permission, from The Journal of Cell Biology [42�].
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of these proteins share a common mechanism for enabling

membrane deformation through the interactions of an

amphipathic peptide with the lipid bilayer. Identifying

the mechanisms for how these protein–bilayer interac-

tions are regulated will be paramount to understanding

the dynamics of this process.

Recent biophysical studies using the prototypical amphi-

pathic helical peptide melittin have shown that an

amphipathic helix oriented parallel to a lipid bilayer

surface would be ideally poised to reside at an interfacial

location between the head groups and the hydrophobic

core [92�,93]. The steep gradient of polarity between the

head groups and the hydrocarbon tails within a lipid

monolayer is estimated to be on the order of the diameter

of an a helix, rendering an amphipathic helix an appro-

priate structural solution to a protein binding the mono-

layer in this fashion [94]. Thus, perhaps many of these

proteins generating membrane deformation function by

partially inserting an amphipathic helix into the bilayer

in such a way as to create changes in membrane structure.

A striking illustration of the power of an amphipathic

peptide in affecting such a process was shown in the

ability of a designed amphipathic 18-mer peptide to form

extensive tubules 40–50 nm in diameter and up to

600 nm in length from liposomes comprising various lipid

combinations [95�].

Penetration into the lipid bilayer seems necessary for this

process, since proteins which bind superficially to the

bilayer without penetration, such as the pleckstrin homol-

ogy domain of PLCd or the ANTH domain of AP180

(similar to the epsin ENTH domain, but without the

ligand-induced amphipathic helix), do not cause defor-

mation [42�,46�,96,97]. Another likely part of this process

is clustering of these proteins such that sufficient con-

centrations are achieved to enable a significant mem-

brane-deforming effect. Proteins such as endophilin

and amphiphysin might cluster by polymerisation,

whereas proteins such as epsin might cluster owing to

the presence of localised interacting proteins. In vitro, and

with overexpression, clustering might be a product of

high protein concentrations, whereas the situation in vivo
is probably more subtle and regulated. It remains to be

seen whether different mechanisms for clustering have

different effects on membrane structure.

Studies with melittin have shown that the monomeric

amphipathic helix had only modest effects on bilayer

structure at lower concentrations, causing only slight

increases in area per lipid. By contrast, melittin monomers

cysteine-linked to create dimers affected a significant

change in bilayer structure and perturbation at the same

monomer/lipid concentration used for monomeric melit-

tin [92�]. Thus, the self-association of an amphipathic

helix is thought to have a qualitatively different effect,

compared with non-associating monomers, on the struc-

tural perturbation of a lipid bilayer [92�]. As such, it is

possible that biological membrane dynamics use the

effects of both monomeric and polymeric proteins to

create variations on bilayer perturbation and deformation.

The ability of these proteins to concentrate in the mem-

brane, either alone or in various combinations, might

affect the degree to which membrane structure is per-

turbed. Indeed, at high concentrations, both monomeric

and dimeric melittin significantly perturb bilayer struc-

ture, and are ultimately membrane-lytic [92�].

Membrane-deforming proteins probably work in conjunc-

tion with clathrin-coat proteins to promote budding. In
vitro data with epsin, amphiphysin and endophilin illus-

trate this point (Figure 4). As mentioned above, co-incuba-

tion of epsin with clathrin induced puckered clathrin

polymers on a lipid monolayer [46�] (Figure 4d). Cla-

thrin-coat proteins incubated with amphiphysin resulted

in coated buds associated with amphiphysin tubules [41]

(Figure 4e). Both epsin and amphiphysin interact bio-

chemically with clathrin, and as such, it makes sense that

these proteins could couple clathrin bud formation with

other membrane-deforming activities. Interestingly, when

incubated with coat proteins, many endophilin-generated

tubules were also capped by clathrin-coated buds, despite

the fact that endophilin has no known binding properties to

clathrin-coat proteins [42�] (Figure 4f). This suggests that

endophilin tubules might serve as structural, rather than

biochemical, substrates for clathrin coats under conditions

that promote budding [42�]. Thus, proteins that alone are

able to drive membrane curvature might facilitate clathrin-

mediated bud formation by altering bilayer structure to

favour this process.

Conclusions and future directions
Our understanding of the mechanisms generating mem-

brane deformation will no doubt increase our awareness of

how this process affects various aspects of cell biology.

Roles for membrane budding and tubulation have been

described in both immunity and disease. For example,

‘reverse’ budding — budding away from the cytosol — is a

mechanism for the formation of the multivesicular bodies

(MVBs) in the late endosomal pathway [98–100]. Recent

work in this field has demonstrated a role for three protein

complexes, ESCRT (endosomal sorting complex re-

quired for transport) I, II and III [101�–103�], in addition

to the monoubiquitin pathway [104,105] and phosphoi-

nositide metabolism [106,107], in the generation of the

lumenal vesicles of the MVBs. Budding into the MVBs is

an efficient way to target membrane proteins/receptors to

lysosomes for degradation [100]. In addition, the lumenal

vesicles of MVBs are also involved in the immune

response [100,108–111]. Loading of the major histocom-

patibility complex (MHC) class II molecules with antigen

involves MVB lumenal vesicles [100]. MVB lumenal

vesicles are also secreted as immunomudulatory orga-

nelles termed exosomes. Exosomes contain MHC class
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II molecules and T cell co-stimulatory factors, and as such

are potent immune stimulators and potential anti-tumour

agents [100,108–111]. Furthermore, in enveloped viruses

such as HIV-1, viral budding from the plasma membrane

has apparently usurped the MVB machinery in an analo-

gous process of budding away from the cytosol into the

extracellular space [100,104,112,113]. How this budding

process occurs is likely to represent a new mechanism in

membrane deformation.

The parasite Toxoplasma gondii represents a new exam-

ple of the role for tubulating proteins in disease. Once the

parasite enters the cell into the parasitic vacuole, parasite

secreted proteins play a role in the generation of a

60–90 nm tubular network emanating into the vacuole

from the vacuolar membrane [114�]. The parasite sec-

retes a protein, Gra2, which is involved in the formation

of these tubules, and impaired tubule formation results

in diminished parasite virulence [114�]. Gra2 contains

two amphipathic a-helical regions that are critical for

tubulation [114�]. Thus, T. gondii uses a secreted tubu-

logenic protein, with requisite amphipathic helices, in its

infectious biology.

Membrane-deforming proteins involved in diverse cellular

processes other than intracellular membrane traffic have

also been described. A member of the amphiphysin protein

family has been localised to the muscle T-tubule system,

where its membrane-deforming properties are likely to

play a role in the biology of these structures [115�].
Furthermore, dynamin and endophilin isoforms have been

localised to the tubular plasma membrane invaginations

often observed at podosomes, dynamic actin–membrane

structures involved in motility and adhesion [116].

The number of factors known to be involved in generat-

ing membrane curvature has increased and has under-

scored our appreciation of the complexity of the process.

Many issues remain to be resolved, and it is likely that the

process is driven by a cooperation of both proteins and

lipids. A major contribution to bilayer deformation is from

the reversible recruitment of cytosolic proteins, which

have the advantage of being recycled, to the membrane.

Ultimately, more membrane-deforming factors will be

identified, and we will probably find that nature has

created more than one solution to the same problem.
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